Seidel energy of complete multipartite graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

Integral complete multipartite graphs

A graph is called integral if all eigenvalues of its adjacency matrix are integers. In this paper, we investigate integral complete r-partite graphsKp1,p2,...,pr =Ka1·p1,a2·p2,...,as ·ps with s=3, 4.We can construct infinite many new classes of such integral graphs by solving some certain Diophantine equations. These results are different from those in the existing literature. For s = 4, we giv...

متن کامل

On spectral radius and energy of complete multipartite graphs

LetKn1,n2,...,np denote the complete p-partite graph, p > 1, on n = n1+n2+ · · ·+np vertices and let n1 ≥ n2 ≥ · · · ≥ np > 0. We show that for a fixed value of n, both the spectral radius and the energy of complete p-partite graphs are minimal for complete split graph CS(n, p− 1) and are maximal for Turán graph T (n, p).

متن کامل

Decompositions of complete multipartite graphs

This paper answers a recent question of Dobson and Marušič by partitioning the edge set of a complete bipartite graph into two parts, both of which are edge sets of arctransitive graphs, one primitive and the other imprimitive. The first member of the infinite family is the one constructed by Dobson and Marušič.

متن کامل

Complete subgraphs in multipartite graphs

Turán’s Theorem states that every graphG of edge density ‖G‖/ (|G| 2 ) > k−2 k−1 contains a complete graph K and describes the unique extremal graphs. We give a similar Theorem for `-partite graphs. For large `, we find the minimal edge density d` , such that every `-partite graph whose parts have pairwise edge density greater than d` contains a K . It turns out that d` = k−2 k−1 for large enou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Special Matrices

سال: 2021

ISSN: 2300-7451

DOI: 10.1515/spma-2020-0131